Theory and Design of Fixed Field Alternating Gradient Accelerators

J. Scott Berg
10 March 2004
BNL Accelerator Forum

Outline

- Motivation: what problem are we trying to solve?
- What is a Fixed Field Alternating Gradient Accelerator (FFAG)?
- History of FFAGs
- Theory and Design of FFAGs
 - Scaling FFAGs
 - ◆ Non-scaling FFAGs
- Concluding remarks

Motivation

- Rapid acceleration is desired for many applications
 - ◆ High repetition rate
 - Accelerating unstable things (muons!)
- Some applications would like CW beams
- A linac is expensive, especially for higher energies
 - ◆ Reduce cost by making many passes through the expensive RF

Motivation (cont.)

Synchrotron

- ◆ Design a ring with limited momentum acceptance
- ◆ Increase magnetic field in proportion to momentum
 - ★ Transverse phase space looks identical at each energy
 - **★** Only longitudinal dynamics change due to velocity variation with energy
- ◆ Rapid momentum increase requires rapid variation of magnetic field: difficult!
- ◆ Typically take thousands of turns (even hundreds of thousands)
 - ★ Uses very little RF
 - **★** Not "rapid acceleration" by our standards
- ◆ Can't inject another beam until the current beam is extracted and magnets have ramped back down
- ◆ Time-of-flight varies with energy: often must adjust RF frequency to keep synchronized

Motivation (cont.)

- Recirculating Linear Accelerator
 - ◆ Make several passes through same linac
 - ◆ Dipoles guide the beam into a different arc on each turn
 - ★ Need to pay to build an arc for each pass
 - ★ Each arc has different optics, which must be matched into the linac
 - Magnetic fields don't vary
 - Dipoles can't separate beams if their energy is too close
 - ★ Limits number of passes (about 4), amount of RF re-use
 - **★** Worse for larger transverse acceptance
 - ◆ Beam can be injected at any time: CW operation
 - ◆ Hit RF at correct phase by adjusting arc length

Motivation (cont.)

Cyclotron

- ◆ Magnetic fields don't vary as you accelerate
- ◆ Weak focusing: requires enormous magnets (high dispersion)
- ◆ Isochronous: RF frequency can be kept fixed
- ◆ Tune varies with energy: limits energy range

BROOKHAVEN NATIONAL LABORATORY

What is an FFAG?

- FFAG stands for Fixed Field Alternating Gradient
- Fixed Field
 - ◆ Magnetic fields do not vary as you accelerate
 - ◆ Therefore, the machine must have a huge energy acceptance
 - **★** Typically at least a factor of two, if not more
- Alternating Gradient
 - Alternate gradients to get strong focusing
 - ◆ Smaller magnet aperture than a cyclotron
 - **★** Lower dispersion
 - **★** Smaller beta functions
- Not isochronous: must deal with RF synchronization

History

- Theory of "scaling" FFAGs: Symon et al., 1956 (Ohkawa 1953?)
- Radial sector electron FFAG built: MURA, 1957
- Spiral sector electron FFAG built: MURA, 1960
- Random mutterings until...
- Johnstone suggests linear non-scaling FODO FFAG (1999)
- Trbojevic suggests nonlinear non-scaling FFAG based on low-emittance lattice design (1999)
- KEK builds "POP" proton FFAG (2000)
- Understanding of longitudinal dynamics develops: Berg, Koscielniak (2001)
- Non-scaling designs converge to triplet design: combination of earlier Johnstone and Trbojevic designs (2002)
- KEK builds 150 MeV proton FFAG (now!)

POP FFAG

POP FFAG

150 MeV FFAG

150 MeV FFAG

Theory: Scaling FFAGs

- Begin with a circle of radius ρ . This is your reference curve.
 - No particle follows this curve!
 - ◆ This curve defines the coordinate system for fields and particles
 - y is the distance perpendicular to the plane of the circle
 - \bullet x is the distance from this curve along a radial line in the plane
 - \bullet s (the independent variable) is the arc length along the circle
- The magnetic field in the midplane is vertical, and is $(h = 1/\rho)$

$$B_y(x,0,s) = B_y(0,0,s)(1+hx)^k$$

◆ Can also have a "spiral angle," which I won't go into here

Coordinate System

Theory: Scaling FFAGs (cont.)

• Maxwell's equations give the magnetic field as

$$A_x(x,y,s) = \sum_{n=1}^{\infty} A_{xn}(s)(1+hx)^{k+1-2n}y^{2n}$$

$$A_y(x,y,s) = \sum_{n=0}^{\infty} A_{yn}(s)(1+hx)^{k-2n}y^{2n+1}$$

$$A_s(x,y,s) = \sum_{n=0}^{\infty} A_{sn}(s)(1+hx)^{k+1-2n}y^{2n}$$

Note sum of powers of 1 + hx and y is invariant

• The full accelerator Hamiltonian is

$$-q(1+hx)A_s - (1+hx)\sqrt{(E/c)^2 - (mc)^2 - (p_x - qA_x)^2 - (p_y - qA_y)^2}$$

Theory: Scaling FFAGs (cont.)

• Peform the transformation $(x, y, t, p_x, p_y) \rightarrow (X, Y, T, P_x, P_y)$ given by

$$1 + hX = (1 + hx) \left(\frac{p_0}{p}\right)^{1/(k+1)} \qquad Y = y \left(\frac{p_0}{p}\right)^{1/(k+1)} \qquad T = t \frac{E_0}{E} \left(\frac{p}{p_0}\right)^{k/(k+1)}$$

$$P_x = p_x \frac{p_0}{p} \qquad \qquad P_y = p_y \frac{p_0}{p}$$

- $p^2 = (E/c)^2 (mc)^2$
- ◆ Result is independent of energy: dynamics at one energy give you dynamics at all energies!
 - * Tunes, momentum compaction are constant: $\alpha_C = 1/(k+1)$
 - **★** Closed orbits geometrically similar
- Normalized emittance transmitted increases as $(p/p_0)^{(k+2)/(k+1)}$. Slow losses at beginning may be captured.
 - **★** Similar behavior in synchrotron

Scaling FFAG: Closed Orbits

Scaling FFAGs: Longitudinal Dynamics

- Slow acceleration with low-Q cavities: synchronize RF phase with bunch
 - ◆ No CW operation: wait for bunch to exit before accelerating next
- Rapid acceleration and/or efficient RF: frequency is fixed
 - ◆ Basic problem: time-of-flight varies with energy
 - ◆ Solution: undergo half synchrotron oscillation
 - ★ RF bucket must cover minimum and maximum energies
 - **★** Minimum voltage needed to accelerate

$$V \geqslant \frac{1}{8} \frac{\omega T_0(\Delta E)^2 [1/(k+1) - 1/\gamma^2]}{\beta^2 E_0} = \frac{\omega \Delta T \Delta E}{8}$$

V is voltage per cell/ring, T_0 is time to traverse cell/ring, ΔT is range in time to traverse cell/ring. Need extra for nonzero phase space volume.

- ★ Voltage proportional to RF frequency, square of energy range, circumference
 - > More machines with smaller energy ranges may be cheaper
- * Relativistic: $k \propto n^2$, so ring voltage $\propto 1/n$

Scaling FFAG: Acceleration

Design Considerations

- ullet For given tunes, aperture proportional to $\Delta E L_{\rm cell}/n$
 - Shorter cells always better for given tunes
 - ◆ More cells give smaller aperture, but more cells: optimize cost
- \bullet For given number of cells, k is limited by over-focusing
- Scaling property means you can seek out best working tune
- For fixed-frequency RF system:
 - Non-relativistic: shorter ring requires less voltage.
 - ★ Very low energies or large emittance, betatron size determines aperture: want shortest ring
 - **★** Smaller emittance, tradeoff with voltage and aperture
 - ◆ Relativistic: longer ring requires less voltage
 - ★ Tradeoff with number of cells and voltage required: find optimum
 - **★** Aperture variation adds complexity

Linear Non-Scaling FFAGs: Motivation

- Problems with scaling FFAGs
 - ◆ Require large magnets
 - ◆ Highly nonlinear magnets: dynamic aperture
 - ◆ Require low frequency and/or large voltages in fixed-frequency case
- Replace nonlinear magnets with linear magnets: dipole-quadrupole combined function
- Make as isochronous as possible to minimize voltage requirement

Linear Non-Scaling FFAGs: Theory

- Design with reference orbit following central energy particle.
- Tunes not constant: approach zero at high energy.
 - ◆ Pass through many resonances: must accelerate rapidly enough
 - Nonlinear resonances driven weakly by linear magnets
- Must avoid half-integer cell tune at low energy
- High energy, fixed frequency RF: make isochronous near central energy. Time of flight is parabolic vs. energy.
 - ◆ Low energy end comes from zigzag; high energy from larger radius
 - Now, $V \ge \omega \Delta T \Delta E/24$, ΔT is height of time-of-flight parabola
 - ★ 1/24 compared to 1/8 for scaling
 - $\star \Delta T$ smaller for parabola than for linear for given max slope (half)
 - $\Delta T \propto (\Delta E)^2$, so $V \propto (\Delta E)^3$
 - ★ Even stronger dependence on energy range than scaling

Linear Non-Scaling FFAGs: Tunes

BROOKHAVEN Linear Non-Scaling FFAGs: Time-of-Flight

Linear Non-Scaling FFAGs: Orbits

Linear Non-Scaling FFAGs: Theory

- Overlap of orbits reduces magnet aperture
- Other scalings like in non-scaling FFAG
 - $\Delta T \propto \omega L_{\rm cell}/n$
 - Aperture proportional to $\Delta E L_{\text{cell}}/n$
- Smallest dispersion, ΔT will occur when minimum horizontal betatron function is at bend (Trbojevic)
 - Requires defocusing quads bend forward
 - ◆ Leads to FDF triplet configuration
- Raising low-energy tune reduces aperture, ΔT
 - Greater overlap of orbits
 - ◆ Cost: sharp rise in betatron function at low energy

Linear Non-Scaling FFAGs: Betas

Linear Non-Scaling FFAGs: Resonances

- Large tune variation: cross many nonlinear and imperfection resonances
- Important to maintain symmetry: imperfection resonance
 - ◆ Symmetry weakly broken by acceleration
 - ◆ Injection section
- Nonlinear resonances: rate of crossing
 - Accelerate quickly enough, cross quickly
 - ◆ Highly linear magnets: nonlinear resonances not driven strongly
 - Slow acceleration, will sit near resonances for a long time!
 - Fix: reduce chromaticity by making magnets nonlinear
 - ★ Can backfire: nonlinearities may reduce dynamic aperture (cf. lattices based on low-emittance lattice)
 - **★** Better for small-emittance beams (proton drivers)

BROOKHAVEN Linear Non-Scaling FFAGs: Longitudinal

- Motion: crossing crest three times
- Motion in channel between stable fixed points
 - ◆ Alpha bucket, but outside the bucket
- ullet Width of channel increases with increasing V
- Scaling to dimensionless variables $x = \omega \tau$, $p = (E E_{\min})/\Delta E$
 - Results depend only on $V/\omega\Delta T\Delta E$ and $T_0/\Delta T$, where T_0 is offset of zero time-of-flight
- Above applies to high-energy systems. Low energy will work more like non-scaling.

Linear Non-Scaling FFAGs: Longitudinal

Linear Non-Scaling FFAGs: Longitudinal

Sample Designs: Muon FFAGs

E_{\min} (GeV)	5		10	
E_{max} (GeV)	10		20	
$V/\omega \Delta T \Delta E$	1/8		1/12	
n	90		105	
C (m)	606.918		767.953	
V total (MV)	675.0		787.5	
Cost (PB)	84.5		104.1	
	QD	QF	QD	QF
L (m)	1.612338	1.065600	1.762347	1.275747
r (cm)	14.0916	15.2628	10.3756	12.6256
$B_{\text{pole}}\left(\mathbf{T}\right)$	2.94697	1.60491	4.30907	2.18390

Sample Designs: Muon FFAGs

- Non-scaling design, "cost optimized"
- Note size doesn't decrease much with energy range
 - ◆ Cell lengths don't go down in proportion to energy
 - ◆ Larger geometric acceptance at lower energies
 - ◆ Longitudinal phase space acceptance requirement makes lower energies tougher: energy spread fixed, energy range not
- Even lower energies impractical
 - ◆ Scaling or nonlinear machines may work better?

New Ideas

- Increasing degrees of freedom
 - ◆ Simplest: scaling FFAG
 - Linear: allow variation of closed orbit
 - ◆ Nonlinear: try to control off-energy behavior more carefully
- Add degree of freedom: ramp *some* magnets (Summers)
 - ◆ Use high-field magnets to get average behavior
 - ◆ Ramp lower-field magnets from negative to positive
 - Program ramp with energy to achieve desired behavior
 - * Isochronism
 - **★** Zero chromaticity
 - Good for higher-energy machines, where have more time
 - Much harder design problem!

Applications

- Muon acceleration
- Proton drivers, other high-intensity proton sources
- Muon phase rotator (PRISM)

PRISM

BROOKHAVEN NATIONAL LABORATORY

Conclusions and Outlook

- There has been a resurgence in interest in FFAGs
- Applications requiring
 - ◆ Rapid acceleration
 - CW beams
 - ◆ Large energy acceptance
- You now know enough to try designing your own FFAG
- There are still new ideas out there to be explored
 - ◆ Nonlinear non-scaling lattices
 - Mixed fixed and ramping magnetic fields
- The big challenge: injection/extraction